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_Although an estimate of the odds ratio adjusted for other covariates can be
obtained by logistic regression, until now there has been no simple way to
estimate other interesting parameters such as the risk ratio and risk difference
multivariately for prospective binomial data. These parameters can be estimated |
in the generalized linear model framework by choosing different link functions or |

transformations of binomial or binary data. Macros for use with the program GLIM

provide a simple method to compute parameters other than the odds ratio while }

adjusting for confounding factors. A data set presented previously is used as an

example.

biometry; regression analysis; statistics

One of the many reasons for the popu-
larity of logistic regression in epidemiologic
applications is the flexibility it allows in
the choice of covariates to be included in
the model. However, estimators of param-
eters other than the odds ratio for prospec-
tive binomial data, such as the risk ratio
and the risk difference, have been available
only in simple situations (1, 2). Noteworthy
is the Mantel-Haenszel (3) type risk ratio
estimator for stratified data, whose vari-
ance is discussed by Breslow (2). In this
paper, I show how risk ratio and risk dif-
ference parameters can be related to regres-
sion coefficients for fitting binomial data
by assuming a functional relationship be-

Received for publication December 27, 1984, and in
final form April 30, 1985.

! From the Department of Epidemiology and Bio-
statistics, McGill University, Montreal, PQ, Canada.

Reprint requests to Dr. Sholom Wacholder, McGill
University, Department of Epidemiology and Biosta-
tistics, 1020 Pine Avenue West, Montreal, PQ, H3A
1A2, Canada.

This research was partially supported by Grant
A8752 from the National Science and Engineering
Research Council of Canada.

The author thanks Dr. Ben Armstrong for his help
with this work.

174

tween disease probabilities and a linear
combination of the covariates. This enables
multivariate estimation of risk ratio or risk
difference parameters while controlling for
confounding and considering interaction.
Using macros (sets of commands approxi-
mately analogous to subroutines) for the
program GLIM (4) is a convenient way to
obtain maximum likelihood estimates of
these parameters when covariates are con-
tinuous, categorical, or both. More gener-
ally, when any monotone function of prob-
abilities is assumed to be a linear function
of the covariates, extension of these prin-
ciples allows estimation of the parameters.

MODELS

In these regressions, the dependent vari-
ables are  observed proportions, each based
on N; = 1 independent observations. Each
proportion has unknown probability of suc-
cess w;, where 7; is functionally related to
the linear predictor, denoted by %LP in
GLIM terminology, and defined when theré
are K covariates as

%LP = ﬁ() + ,81X1 + ,[)’_ng + ...+ ﬁKX}{,
the sum of the products of unknown regres:
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on coefficients 3, and the values of the
ovariate for the ith proportion. A smooth
onotone transformation, or link function,
slates the covariate values for each pro-
ortion to its respective probability
hrough the linear predictor. For logistic
egression, the link function used is the
garithm of the odds of the probabilities;
ymbolically, log(#/(1 — 7)) = %LP. Inver-
ion gives 7 = exp{%LP)/(1 + exp(%LP)).
or risk difference models, the identity link
inction 7 = %LP is used; for the risk ratio,
he link is log(w) = %LP, equivalent to = =
xp(%LP). Other monotonic link functions
be used. For example, the log-comple-
nt link log(1 — 7) = %LP, described by
inberg (5), models the log of the proba-
ty of no disease, or health, which has
resting applications for studying syn-
. Probit, arc-sin, and complementary
log transformations are discussed in the
IM manual (4). Storer et al. (6) present
cros for fitting the odds transformation.
n each of these models, the regression
fficient 8, represents the difference in
probability, transformed by the appro-
te link function, associated with a unit
nge in the value of the covariate X
sn the other K — 1 covariates remain
stant. For the logistic link, 8, is the
erence between the logarithms of the
, and, therefore, exp(8;) is the ratio of
odds, associated with a change of one
t in X,. Similarly, for the identity link,
8 a risk difference, and for the logarith-
link, exp(B:) is the risk ratio. For the
probability of health link, 8, represents
logarithm of the “health ratic” or the
o of the probabilities of no disease at
ues of X, which differ by one unit.

he risk difference model is related to
_additive relative risk model discussed
Thomas (7) and Storer et al. (6) for
tified data. The additive relative risk
lel essentially fits a model in the odds
 presumes different baseline probabili-
for each stratum.

ifferent links imply different models,
| therefore, generally, different fits of
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the data, even when the same covariates
are included in the model. The link speci-
fies the form of the relationship between
the transformed probabilities and the co-
variate values. For example, a model with
a logarithmic link and a single continuous
covariate assumes a linear relationship be-
tween the covariate and the logarithm of
the probability, while the identity link as-
sumes that the linear relationship is be-
tween the covariate and the probability it-
self. For different links, therefore, qualita-
tively different dose-response relationships
are fit.

Furthermore, when several factors are
included in the model without an interac-
tion, each link implies different constraints
on the fitted probabilities. For example, if
A and B are dichotomous risk factors, the
contrast between A = 2 and A = 1 will be
the same for both values of B; but note that
for each different link, the “effect” will be
the difference in the transformed probabil-
ity. Thus, with a logistic link, no interac-
tion implies that the difference in the logits
of the probabilities will be the same for B
= 1 and B == 2, while for the identity link,
no interaction implies equal differences of
the untransformed probabilities. Generally,
when A and B are independent risk factors,
absence of interaction on one scale implies
presence of inferaction on other scales.
Thus, for each link, there are different cri-
teria for presence and absence of interac-
tion, and use of different links allows for
several assessments of synergy. The impli-
cations of different definitions of interac-
tion are discussed elsewhere (8-10).

The fitted values for each link are iden-
tical, and the parameters (and their esti-
mates} are functionally related only when
the model is saturated; that is, when the
number of fitted parameters equals the
number of distinct covariate vectors. This
occurs when the model fits main effects and
all possible interactions of several polyto-
mous variables; a special case of this is a
single polytomous variable. Since a sepa-
rate parameter will be available for each
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cell with distinct covariate values, the fitted
proportions will equal the observed propor-
tions for all links.

ESTIMATION

In regressions with a binomial outcome
variable, the assumption from classic re-
gression of constant variance does not hold.
A proportion based on N; observations with
mean w; will have variance x; (1 — 7;)/N..
The asymptotic variance of the trans-
formed proportion generally also depends
on m; If the x’s were known, a weighted
regression could be used, with each obser-
vation assigned a weight inversely propor-
tional to its variance. The «;’s, however,
depend on the unknown regression coeffi-
cients.

GLIM solves this problem by using the
iterative procedure described by McCullagh
and Nelder (11). Weights are assigned to
each proportion based on the estimates
from the model of the #;’s, which in turn
are based on the estimates of the vector of
B’s from the most recent iteration. Param-
eter estimates from successive iterations
converge to the maximum likelihood esti-
mate, regardless of the values of ; used for
the first iteration step (11), when the pa-
rameter space of 8 = (8o, 81, . . ., Bx) is RF Y,
the full K + 1 dimensional space, allowing
any possible vector of parameter values.

RESTRICTION OF THE PARAMETER
SPACE

While the domain of all link functions is
the 0-1 interval, the range of some, such as
the logarithmic link, is not the set of real
numbers. The inverses of these link func-
tions may be undefined or lie outside the
0-1 interval for some values of %LP. For
example, positive values of %LP for the
logarithmic link and values of %LP cutside
the 0-1 interval for the identity link imply
probabilities which do not make sense. This
can cause problems in estimating risk ra-
tios, health ratios, and risk differences
when a continuous covariate or several
polytomous covariates are included in the
model. The odds ratio, based on the logit

WACHOLDER

link whose range is the set of all real num-
bers, does not share this problem. Thus,
one advantage of using logistic regression
is that there is no bound on the possible
values of parameter estimates.

There are two possible reasons why im-
permissible values of %LP occur. Perhaps
most likely is that the model itself is mis-
specified. The nonsense probabilities then
serve as a warning of an inappropriate
model. Even when the model is correct,
however, random variation may result in
fitted probabilities which are not between
0 and 1. This is prone to occur when some
of the true probabilities are close to 1, to 0,
or to either, for the logarithmic, log-com-
plement, and identity links, respectively,
especially when there is considerable
spread in the true probabilities.

Disallowed values of %LP also imply im-
permissible values of the vector 8. The pa-
rameter space for 3, given a set of covariate
vectors, is the subset of R**! which gener-
ates a vector of fitted probabilities whose
components all lie between 0 and 1. When
convergence occurs on the boundary of the
restricted parameter space, the conver-
gence will not generally be to the maximum
likelihood estimate within the restricted
parameter space. Thus, estimates of 3 lead-
ing to probabilities equal to 0 or 1 shouid
be regarded as indications of model inade-
quacy rather than as reasonable parameter
estimates.

The macros check for probabilities be-
tween O and 1 at each iteration. When a
probability which is out of range is fitted,
the linear predictor is revised arbitrarily to
put it within range. The macros can be
revised to do more extensive checking and
warning or to delete the point which is out.
of range when an estimate on the boundary
of the parameter space is suspected, such
as when a fitted value very close to 0 or
is obtained.

ITERATION

There are four basic calculations which
GLIM requires for each iteration in th
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'TABLE 1
Number of babies with birth weight less than the tenth percentile, by maternal alcohol consumption, smoking
status, and social class*

Alcohol intake

Social class Nonsmokers Smokers
Heavy Moderate Light Heavy Moderate Light
Tand II 11/84 5/79 11/169 6/28 3/13 1/26
I 4/22 3/25 12/162 4/17 2/7 6/38
IVand V 0/14 1/18 12/91 7/19 2/18 8/70

Reproduced with permission from Wright et al. (13).
TABLE 2
Deviances for different models and links
Parameter
Model*

OR RR RD HR dft
A. Grand mean only 33.2 33.2 33.2 33.2 17
B.ALC 24.0 24.0 24.0 24.0 15
C. SMO + SOC 22.9 22.8 229 22.9 14
D. ALC + SMO + S0OC 13.8 13.6 14.9 15.1 12
E. ALC + SMO + SOC + ALC.SMO 12.0 12.0 11.6 11.6 10
F. ALC2 + SMO + SOC 14.2 14.2 15.2 15.3 13
G. ALC2 + SMO + SOC + ALC2.SMO 13.5 135 134 13.4 12
H. ALCC + SMO + SOC 14.3 14.3 15.9 16.2 13

erate drinkers, and 3 to heavy drinkers.
Degrees of freedom of the deviance.

imum likelihood estimation for bino-
1 data with a given link:

Calculation of %FV (the vector of fit-
values), the product of N, and the fitted
portion 7;, which itself is based on the
ent value of the vector %LP. (As dis-
ed above, the calculated fitted proba-
ies may be negative or greater than 1
some observations. For example, if the
P is positive for any observation when
g the logarithmic link, the correspond-
probability would be estimated to be
ter than 1. %FV is checked to ensure
each component lies between 0 and

2. Calculation of %DR, the vector of de-
ives of the link function evaluated at

Calculation of %VA, the vector of es-
nated variances of the binomial variables.
component of the vector % VA is of
orm N,‘ 7A!'i (1 - “;f,').

ALC, SMO, and SOC are categorical variables for maternal alcohol consumption, smoking status, and
| class, respectively. ALC2 is a dichotomous variable with heavy drinkers in one category and moderate
light drinkers in the other category. ALCC is a continuous variable, assigning a 1 to light drinkers, 2 to

4. Calculation of %DI, the log-likelihood
or deviance for each observation. The sum
of the %DUI’s for all the observations is a
measure of goodness of fit, minimized by
the maximum likelihood estimates. The
formula for the deviance for all binomial
links is the same as that for logistic regres-
sion (12, equation 6.16),

Although the first two calculations de-
pend on the link function used, the last two
are common to all links. Upon invocation
of a single GLIM macro for a given link
function, these calculations become trans-
parent to the user.

GLIM MAcros

The GLIM macros RD, RR, HR, and OR
for estimating the regression coefficients
for identity, logarithmic, log-complement,
and logarithmic links, respectively, are
found in Appendix 1. Invocation of one of
these macros by the $USE macro command
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TABLE 3
Comparison of fitted values*® for different links

Parameter
Cell Observed
OR RR RD HR
1 11 10.6 10.4 11.7 11.8
2 5 5.9 5.9 5.6 5.6
3 11 10.5 10.6 10.0 10.0
4 6 5.7 5.7 5.4 5.4
5 3 1.6 1.6 1.6 1.6
6 1 2.7 2.7 2.9 2.9
7 4 3.7 3.7 3.6 3.6
8 3 2.5 2.5 2.4 2.4
9 12 13.8 13.7 13.8 13.8
10 4 4.5 4.7 3.7 3.7
11 2 1.2 1.2 1.1 1.1
12 6 5.3 5.3 5.3 5.3
13 0 2.4 2.4 2.5 2.5
14 1 1.8 1.8 1.9 1.9
15 12 7.8 7.7 8.7 8.7
16 i 5.1 5.3 4.4 4.4
17 2 3.0 3.0 2.9 2.9
18 8 9.9 9.8 105 10.5

* Fitted values are from model D which includes
SMO, SGC, and ALC.

TABLE 4
Estimates of alcohol effect, comparing heavy drinkers
with others, adjusted for smoking and social class

Parameter
Log Log .
odds  misk g Mok o Heath
s . ifference ratio
ratio ratio
Estimate 0.7374 0.6830 0.0767 0.0868
Standard
error 0.2432  0.2022 0.0351 0.0297

invokes other macros needed to perform
the calculations for the given link needed
to obtain the appropriate estimates for var-
ious models using $FIT commands. (Al-
though logistic regression can be done in
GLIM more simply without macros (4), the
OR macro is provided for comparison.) A
given link rernains in force until a new link
macro or a $ERR command is invoked.
Kstimates of the regression parameters
and their standard errors as well as the
appropriate likelihood ratio tests are ob-
tained in the usual manner. However, the
usual confidence intervals based on the
normal approximation and the reported
standard errors can be misleading for asym-
metric links such as the logarithmic. For
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example, the parameter values within the
confidence bounds may yield estimated
probabilities which are not between 0 and
1. Details about this as well as how to use
GLIM and the interpretation of the macrg
code can be found in the GLIM manual (4),

EXAMPLE

Wright et al. (13) investigated the rela-
tionship between maternal alcohol con-
sumption and the risk of a low birth weight
baby. Table 1 presents the total number of
births and the number of births below the
tenth percentile in birth weight in each of
18 categories defined according to whether
or not the mother smoked, her membership
in one of three social class groups, and by
whether her drinking was light, moderate,
or heavy. In their analysis, Wright et al,
used the Mantel-Haenszel method (3) to
account for the effects of social class and
smoking. They noted that the estimates of
the alcohol effect varied in the smoking and
nonsmoking groups. English and Bower
(14) suggested that logistic regression is the
method of choice for this data set because
it allows 1) tests for trend in ordered cate-
gories such as alcohol consumption, 2) si-
multaneous control of several confounders,
and 3) tests of hypotheses of no interaction.
Qur methods retain these advantages, while
allowing inference on parameters other
than the odds ratio. Of particular interest
is the assessment of interaction which de-
pends on the link chosen. The GLIM com-
mands used to obtain some of the results
are found in Appendix 2. The annotated
output is found in Appendix 3. Tables 2-4
compare the results from different links.

These macros were used to fit the low
birth weight data. The unadjusted regres-
sion estimates for the logarithms of the risk.
ratios are 0.106 and 0.660 comparing the
moderate and heavy drinkers, respectivel
with the light drinkers. These are simp
the logarithms of the crude risk ratios
1.11 and 1.93. After simultaneous adjus
ment for smoking and social class catego
the regression estimates increase slightly
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.175 and 0.680. The goodness-of-fit test of
he adequacy of the model (x* = 13.61, 12
f) indicated an acceptable fit. Treating
lcohol category as a continuous variable
ith possible scores of 1, 2, or 3 while still
djusting for smoking and social class cat-
gory suggests that the risk of giving birth
o a low birth weight baby increases by a
actor of 1.40 for each level. The implicit
al spacing between light and moderate
d between moderate and heavy drinkers,
wever, does not seem justified because
risks to the babies of moderate and
t drinking mothers seem very similar,
ile there seems to be a more substantial
rease in risk to babies of heavy drinking
thers. The likelihood ratio tests of the
ohol effect are significant for all the
dels suggested. Wright et al. (13) suggest
t the alcohol effect may depend on
king category. As English and Bower
) show for a logistic link, however, there
o significant improvement in the fit
m including a smoking-alcohol interac-
in any of the link functions considered.
he odds ratio estimates, tests, and fitted
es are quite similar to those for the risk
0, as would be expected for data such as
e in which the probabilities are near
for all cells. There is a similar corre-
dence for the risk difference and
th ratio since 7 is closely approximated
log(1 — #) for small . Although dif-
nt interpretations of the parameter es-
tes for main effects and interactions
Id be given, the conclusions to be drawn
the various models considered in this
ple are not substantially different.
re could be greater discrepancy in some
the significance levels if the sample sizes
smaller and in the fitted values from
 various links if the range of the propor-
ns over the 18 cells were wider.

CONCILUSIONS

e macros described above allow esti-
tion of risk ratio and risk difference
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parameters for binomial data while ac-
counting for confounders and effect modi-
fiers and retaining the simplicity, conve-
nience, and flexibility of GLIM. For in-
stance, continuous and categorical covar-
iates can be included in the model, and
subjects can be grouped according to co-
variate value, as in the example, or each
subject can be retained as a separate unit.
Estimates can be obtained for other link
functions by simple extensions of this pro-
cedure.
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Appendix 1
GLIM macros
$SUBFILE MACROS §
$C N.B.: The binomial denominator is assumed to be N.

$C**RD for RISK DIFFERENCE parametergWANsxsmisrkiiriis
$MAC RD $PR ' ESTIMATION OF RISK DIFFERENCES' §

$OWN RDFV VA RDDR DI $SCALE 1 $CALCULATE %LP=.5 §

$C P=.5 is the starting value. $ENDM $

$C**RR for RISK ratio parametersird daRmawAxtewsikwwknk

$MACRO RR $PR ' ESTIMATION OF RISK RATIOS' $

$OWN RRFV VA RRDR DI $SCALE ] $CALCULATE %LP=-.5 §

$C P=%EXP(~.5) is the starting value. ExpCnentiate regression
coefficients to get the RISK RATIOS. |

$ENDMACRO §

$C*QHR for the HEALTH zatiok***ﬁw*********k******&ﬂ***
$MACRO HR $OWN HRFV VA HRDR DI $SCALE 1 $CALCULATE %LP=-.5 ¢
$C P=%EXP(-.5) is the starting value §

$ENDMACRO 3

$C**OR for the ODDS RATIOFXAHARAKAAXNRNARMANARNRAANNNR

$MACRO OR $C 'ERROR BIN K' does the same thing as this macro §
$PRIRT ' ESTIMATION OF THE ODDS RATIO' §

$OWN ORFV VA ORDR DI ¢SCALE 1 $CALCULATE %LP=0 $ENDMACRO $

$C*****ﬁ*****t***
$MACRO RDFV $CH**#*xFITTED VALUES for RD**g
$C guard against probabilities which are out of range §
$CALCULATE %LP=%IF(%LT(%LP,60),.0001 %LFP):
$LP=%IF(%GT(%LP,1),.9999,%LP):
P=%LP :%FV=N*P $ENDMACRO$
sc***************
$MACRO RRFV $Cx»*x»»PITTED VALUES for RR»»
$C Guard against probabilities below 0 $
$CALCULATE $LP=%IF(%GT(%LP,0),-.0001,%LP):
P=XEXP(%LP) :%FV=N*P $ENDMACROQ$
sct*t***t**t*****
$MACRO HRFV $C***¥**xFITTED VALUES for HR** §
$C guard against probabilities below O #
$CALCULATE %LP=%IF(%GT(%LP,0),-.0001,%LP):
P=1-%EXP(%LP) :%Fv=N*P $ENDMACROS$
$c****t**t***tt**
$MACRO ORFV $C *wwxFITTED VALUES*for OR ** §
$CALCULATE ELP=%EXP(%LP):P=ELP/(1+ELP) :%FV=N*P $ENDMACRO §

$C***************
$C******i********

$MACRO VA $C =»%variance of binomial proportion with N replicationg*#xg
$C applies to all links #¥xawxaxg

$CALCULATE %VA=%FV*(1-P) $END $§

$C***************

sc**k************

$MACRO RDDR $C **Derivative of the IDENTITIY function evaluated at %Fv#!
$CALCULATE %DR=1/N S$ENDMACRO §

$MACRO RRDR $C ***Derivative of LOG function evaluated at %FV *wwiwg

$C

$CALCULATE %DR=1/%FV SENDMACRO$

sc***i**tﬁt******

$MACRO HRDR 3C »»»Derivative of LOG functionx®=x |

$C

$CALCULATE %DR=0.-1./(N-%FV) $ENDMACROS$

sc PR RRXRETRRE

Continued
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$MACRO ORDR $C **»Derivative of the LOGIT function evalauted at %Fv*x |

$CAL %DR=1/%VA $ERDMACRO$
Pttt I T

sc*******iﬁ******

$MACRO DI $C ***%DI is the DEVIANCE function (KU-KULLBACK INFQ)¥®xw g
$WARN §!

$CALCULATE %DI=~2%(%YV*ELOG({EFV/SYV)+ (N-SYVIXKLOG( (1-P)*N/(N-%¥V))) !
$WARN % !

$ENDMACRO §

sc*******t*******

sc*ﬁ**ﬁ**********

$FINISH 3

Appendix 2
GLIM Input Commands

$INPUT 1 72 $C READ MACROS FROM UNIT 1 (MUST BE DEFINED LOCALLY) $
$C Data from Wright et al. (13) ¢
AR REA AR RE KRN AR KRR AR MR R AR TR AR AR ARA R RRARE KRR RACR R K R RAK
$ECHO $OUTPUT 15 $C send output to unit 15 (locally defined)s
$URIT 18 $C There are 18 proportions
$DATA D N $C D is the no. of diseased bablies out of W births. 3
$READ 11 84 5 79 11 169 628 313 1 26
4 22 3 25 12 162 417 2 7 6 38
014 1 18 12 81 719 218 8 70 s
$CALCULATE ALC=4-%GL(3,1):SOC=%GL(3,6):SMO =%GL(2,3) $
$LOOK D N ALC SMO SOC $§
$C E.g.: there were 11 low birthweight babies out of
84 births to mothers who had heavy alcohol consumption,
did not smoke and vere in the lovest social class. 3
$FACTOR ALC 3 SOC 3 SMO 2 $CALC ALC2=ALC §
$C ALC=alcohol consumption category, SMO=smoking category, and
80C=social class category are retained as categorical variables,
or FACTORS. ALC2 is the continuous version of ALC.
$YVAR D $C The DEPENDENT variable is D.$

$MAC STAR sPR ¥ ot e oA 3o e A o o 3k o o o R ok ok e i e e e e A ok O $C separate fits sENDMAC $

$USE RR $C to show the flexibility

$FIT %GM $DISPLAY E $USE STAR §
$FIT ALC $DISPLAY E $USE STAR $
$FIT SMO+S0C $C deviance only $USE STARS$
$FIT +ALC $DISPLAY ER $USE STAR$
$FIT +ALC.SMO $DISPLAY E $USE STAR $
$FIT ALC2+SMO+SOC $DISPLAY E $USE STAR $

Fioed St

$USE RD $C Invoke macros for fitting risk differences §
$FIT SOC+ALC+SMO $DISPLAY E $USE STAR $

$FIT +ALC.SMO $DISPLAY E $USE STAR $

$C******

$ERROR B N $C Usual logistic regression s

$FIT SOC+ALC*SMO $DISPLAY E $USE STARS

$STOP 3
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Appendix 3

Annotated GLIM output produced by code in Appendix 2%

$UNIT 18 $C There are 18 proportions §
$DATA D N $C D is the no. of diseased babies out of N births. $
$C Data from wright et al, (13) ¢
$READ 11 84 5 79 11 169 628 313 1 26
4 22 3 25 12 162 417 2 7 6 38
014 118 12 91 719 218 870 s
$CALCULATE ALC=4-%GL(3,1):S0C=%GL(3,6):5M0 =%GL(2,3) s
$LOOK D N ALC SMO $0C $

1 11,00 84.00 3.000 1.000 1.000
2 5.000 79.00 2.000 1.000 1.000
3 11.00 169.0 1.000 1.000 1.000
4 6.000 28.00 3,000 2.000 1.000
5 3.000 13.00 2.000 2.000 1.000
6 1.000 26,00 1.000 2.000 1.000
7 4.000 22,00 3.000 1.000 2.000
8 3.000 25.00 2.000 1.000 2,000
9 12.00 162.0 1.000 1.000 2.000
10 4.000 17.00 3.000 2.000 2.000
11 2.000 7.000 2.000 2.000 2.000
12 6.000 38.00 1.000 2.000 2,000
13 .0 14.00 3.000 1.000 3.000
14 1.000 18.00 2.000 1.000 3.000
15 12.00 91.00 1.000 1.000 3,000
le 7.000 19.00 3.000 2,000 3.000
17 2.000 18.00 2.000 2.000 3.000
18 8.000 70.00 1.000 2.000 3.000

$C E.g.: there were 11 low birthweight babies out of
84 births to mothers who had heavy alcohol consumption,
did not smoke and were in the lowest social class. §
$FACTOR ALC 3 SOC 3 SMO 2 $CALC ALC2=ALC §
$C ALC=alcohol consumption category, SMO=smoking category, and
SOC=social class category are retained as categorical variables,
or FACTORS., ALC2 is the continuous version of ALC. $
$YVAR D $C The DEPENDENT variable is D.s$
$MAC STAR $PR 'ARAAXKARARRXAXNXANKXRINRUNRY | £C geparate fits $ENDMAC $
[Tt it isd
$USE RR $C to show the flexibility s
ESTIMATION OF RISK RATIOS

$FIT 3%GM $DISPLAY E $USE STAR $
SCALED
CYCLE DEVIANCE DF
5 33.21 17
ESTIMATE S.E. PARAMETER
1 -2.217 .9531E-01 %GM

SCALE PARAMETER TAKEN AS 1.000

s e AT P KT e AR A O I I e e R R SRR

$FIT ALC $DISPLAY E $USE STAR $
SCALED

CYCLE DEVIANCE DF
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BINOMIAL MODELS IN GLIM 183
3 23.96 15
ESTIMATE S.E. PARAMETER comments
1 -2.409 .1349 $GM
2 .1062 .2729 ALC(2) exp(0.106)a1.11
3 .6596 .2092 ALC(3) exp(0.660)=1.93
SCALE PARAMETER TAKEN AS  1.000

T gy i e Vi e e ke e e e Ve O T T 96 9 W 9 0 0K R e
$FIT SMO+SOC $C deviance only $USE STAR §

SCALED
CYCLE DEVIANCE DF
3 22.85 14
Ve 7 0 75 T T 3 S S S o 3 e e o 3 e e e 2R 0 O O R O
$FIT +ALC $DISPLAY ER §
SCALED
CYCLE DEVIANCE DF
3 13.61 12 The likelihood ratio statistic
is 22.85-13.61=9.24 (2 &.f.)
ESTIMATE S.E. PARAMETER
1 -2.764 .2030 IGM
2 .5000 .2016 SMO({2)
3 .2926 L2331 S0C(2)
8 .2997 .2434 s0C(3)
5 .1749 L2741 ALC(2) exp(.175)=1.19
6 L6802 L2154 ALC(3) exp{.680)=1.97
SCALE PARAMETER TAKEN AS 1.000
UNIT OBSERVED FITTED RESIDUAL
1 11.00 10.45 .1808 The 'Fitted’' column
2 5.000 5.931 -.3976 from this table is the
3 11.00 10.65 .1100 RR column in Table 3.
4 6.000 5.744 .1196
] 3.000 1.609 1.171
6 1.000 2.702 ~-1.094
7 4,000 3.668 .1898
8 3.000 2.515 .3225
9 12.00 13.68 -.4752
10 4.000 4,673 -.3657
11 2.000 1.161 .8526
12 6.000 5.291 .3322
13 .0 2,351 ~1.681
14 1.000 1.824 -.6435
15 12.00 7.741 1.600
16 7.000 5.260 .8919
17 2.000 3.007 -.6362
18 8.000 9.817 ~-.6253

P e e e T e T e ]
$FIT +ALC.SMO $DISPLAY E $USE STAR $

SCALED
CYCLE DEVIANCE DF
2 12.02 10 Likelihood ratio (interaction)s
13.61-12.02=1,5%
ESTIMATE S.E. PARAMETER

1 -2.664 .2118 %GM

2 .2404 .2973 SMO(2)

3 .2662 .2324 §0C(2)

4 .2969 2407 $0C(3)

5 -.4968E-01 3611 ALC(2)

6 .4883 .2966 ALC(3)

7 .5733 .5486 SMO(2) . ALC(2)

8 .4436 4319 SMO(2).ALC(3)
SCALE PARAMETER TAKEN AS 1.000

Continued
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$FIT ALC24SMO+SOC $DISPLAY E $USE STAR $

SCALED
CYCLE DEVIANCE DF
2 14.03 13
ESTIMATE S.E. PARAMETER
1 =3.131 L2729 %GM
2 .3353 .1088 ALC2 exp(.335)=1.40
3 .5073 .2006 SMO(2)
4 .3051 .2314 50C(2)
5 »2997 .2422 50C(3)

SCALE PARAMETER TAKEN AS 1.000

7 e 35K P 3 W TR P T SR O 3 O B B S A T S B

$OHERAN RN

$USE RD $C Invoke macros for fitting risk differences $
ESTIMATION OF RISK DIFFERENCES

----- CURRENT DISPLAY INHIBITED

$FIT SOC+ALC+SMO $DISPLAY E $USE STARS$

SCALED
CYCLE DEVIANCE DF
3 14.92 12
ESTIMATE S.E, PARAMETER

.5885E-01 «1615E-01 %GM

-2656E-01 -2323E-01 80C(2)
.3628E-01 +2700E-01 50C(3)
.1253E-01 +2572E-01 ALC(2)
.BO32E-01 -3028E-01 ALC(3)
- 545%E-01 +2705E-01 SMO(2)

SCALE PARAMETER TAKEN AS 1.000
R R TR AR AR A AR KRR 3k

OV W N

$FIT +ALC.SMO $DISPLAY E $USE STAR
SCALED
CYCLE DEVIANCE DF
2 11.64 10
ESTIMATE S.E. PARAMETER
1 <6374E-01 .1686E-01 %GM
2 .2782E-01 «232BE-01 80C(2)
3 . 3684E-01 <2690E-01 80C(3)
4 -.3640E-03 J2726E-01  ALC(2)
5 .5466E-01 .3342E-01 ALC(3)
6 .19078-01 .3088E-01 SHO(2)
7 .8379E-01 .7395E-01 ALC(2).8MO(2)
8 -1082 .6963E-01 ALC(3).S5M0O(2)

SCALE PARAMETER TAKEN AS 1.000
ARRARRRRERTERAERRAR GRS R A

gORERRwR
$ERROR B N $C Usual logistic regression
----- CURRENT DISPLAY INHIBITED
$FIT SOC+ALC®SMO $DISPLAY B $USE STARS
SCALED
CYCLE DEVIANCE oF
3 11.97 10
ESTIMATE S.E. PARAMETER
1 -2.609 .2362 %GM
2 .3137 .2686 80C(2)
3 .3481 2816 8S0C(3)
4 -~.4743E-01 .3935 ALC(2)
5  .5565 .3361 ALC(3)
6  .2606 .3352 SMO(2)
7 .6771 .6348 ALC(2).8M0(2)
8 .5821 5152 ALC(3).5M0(2)

SCALE PARAMETER TAKEN AS 1.000

3 0 9 0 3R 5 3 i o e RO R T T e e
‘C***&#t

$STOP 3

*Upper case vas produced by GLIM, lower case is annotation and comments,
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